Получение концентрата

Осн. кол-во меди (85-88%) получают по пирометаллургич. схемам, к-рые, как правило, включают след. последовательные стадии: обжиг концентрата, плавку, конвертирование, рафинирование. Обжиг проводят при переработке высокосернистых и полиметаллич. концентратов. При обжиге удаляют избыточное кол-во S в форме газов, содержащих 5-8% SO2 и используемых для произ-ва H2SO4, и переводят часть примесей (Fe, Zn, As, Pb и др.) в формы, переходящие при послед. плавке в шлак. Обжиг проводят в печах "кипящего слоя" с применением дутья, обогащенного О2 (24-26% О2), без затрат углеродистого топлива. Продукт обжига - огарок -плавят в печах отражательного типа, реже - электропечах. Богатые медью руды плавили в шахтных печах, в настоящее время этот способ имеет подчиненное значение. Перечисл. способы плавки связаны с расходом (10-18% от массы шихты) углеродистого топлива (прир. газ, мазут, кокс) или электроэнергии (350-450 кВт.ч на 1 т шихты).

В процессе плавки образуются 2 жидкие фазы-сплав сульфидов меди, Fe, цветных металлов (штейн; 22-45% Сu) и сплав оксидов металлов и силикатов (шлак; 0,4-0,7% Сu), к-рые не смешиваются друг с другом. Шлаки складируют или используют при произ-ве строит. материалов. Осваиваются автогенные процессы плавки, использующие тепло экзотермич. р-ций окисления сульфидов; концентраты обрабатывают в атмосфере О2, воздуха, обогащенного О2, или подогретого воздуха. Высокая производительность, получение богатых медью штейнов (до 75% Сu) и концентрированных по SO2 газов, миним. расход углеродистого топлива-достоинства, определяющие автогенные процессы как перспективное направление в развитии пирометаллургии меди. Важнейшие способы автогенной плавки-кислородно-факельная, взвешенная, отражательная, электроплавка, плавка в жидкой ванне, процессы "Норанда", "Мицубиси".

Расплав штейна (в осн. Cu2S • FeS) направляют на кон-вертирование - продувку сжатым воздухом с целью количеств. окисления FeS и его ошлакования в присут. кварцевого флюса (первая стадия процесса), окисления Cu2S и макс. удаления S и большинства примесей (вторая стадия): При конвертировании используют тепло экзотермических р-ций окисления, конечный продукт-черновая медь (98,5-99,3% Сu).Черновую медь рафинируют огневым, а затем электрохим. способом. Огневое рафинирование основано на большем, чем у меди, сродстве большинства металлов-примесей к кислороду, что позволяет при продувке расплава воздухом окислить и ошлаковать количественно Fe, S, Zn, Pb и, частично, Ni, As, Sb, Bi. Для удаления кислорода расплав меди обрабатывают восстановителем (прир. конверсир. газ, сырая древесина). Готовый металл (>=99,5% Сu) разливают в формы, удобные для проведения электролиза. Полученные отливки служат анодами. Электролитич. рафинирование проводят в сернокислых р-рах при наложении постоянного тока; в процессе электролиза осуществляется непрерывная циркуляция подогреваемого (57-67°С) р-ра, медь осаждают на катодных основах, получаемых также электролизом в спец. матричных ваннах при условиях, обеспечивающих осаждение чистого металла. Для получения ровного катодного осадка требуемой текстуры в электролит вводят ПАВ. Катодную медь (>=99,94% Сu) переплавляют и разливают в формы, удобные для послед. обработки прокаткой, волочением. При растворении анодов ряд примесей (As, Fe, Ni, Sb) накапливается в электролите, поэтому часть его выводят из циркуляц. цикла (заменяя равным объемом р-ра H2SO4) и направляют на переработку для получения техн. сортов медного и никелевого купоросов. Нерастворимые включения анода образуют дисперсный продукт - шлам, в к-ром концентрируются благородные и редкие металлы. Этот продукт специально перерабатывают в шламовом цикле. Анодные остатки (выход их 15-18% от массы анода) возвращают на переплавку в цикл огневого рафинирования. При пирометаллургич. переработке медного концентрата извлекают до 96-98% меди и благородных металлов, однако степень извлечения сопутствующих элементов (S, Zn, Ni, Pb) гораздо ниже, a Fe полностью теряется со шлаком. Многие проблемы пирометаллургич. произ-ва меди (экологическая из-за повыш. тепло-, пыле- и газовыделения, взрывоопасность в случае контакта расплава штейна с водой и др.) устраняются при использовании гидрометаллургич. технологии. Она включает: селективное выщелачивание меди из сырья, чаще всего р-ром H2SO4 или NH3; очистку р-ра от примесей и извлечение сопутствующих ценных элементов (Zn, Co, Ni, Cd и др.); выделение меди. При переработке бедных р-ров (0,5-12,0 г/л меди) используют цементацию на железном скрапе и экстракцию с послед. электрохим. осаждением меди. Из богатых р-ров (30-40 г/л меди) медь извлекают чаще электролизом или автоклавным осаждением водородом (127-197 °С, давление Н2 1,5-2,5 МПа). В последнем случае медь получают в форме порошка (>=99,6% меди). Гидрометаллургич. схемы эффективны при извлечении меди из бедных руд методами подземного, кучного, чанового выщелачивания, в т. ч. с использованием биохим. окисления сульфидов; остатки от выщелачивания смешанных руд обогащают флотацией. Рациональна переработка полиметаллич. концентратов, вторичного сырья, особенно при небольшом объеме произ-ва. В этом случае весьма перспективно автоклавное выщелачивание при повыш. т-рах (137-197 °С) и давлении кислородсодержащего газа-окислителя (давление О2 0,2-1,0 МПа), обеспечивающее значит. интенсификацию процесса, получение более чистых р-ров и элементной S при окислении сульфидов. Гидрометаллургич. схемы позволяют более комплексно использовать сырье, проще обеспечить экологич. и пром. санитарию. Внедрение их сдерживается из-за недостаточной интенсивности, повыш. эксплуатац. затрат и др.

Перейти на страницу: 1 2

Еще статьи по экологии

Особенности антропогенного преобразования черноморского побережья и его эколого-геоморфологические последствия на примере Краснодарского края
Краснодарский край является уникальным регионом с наиболее благоприятными для рекреационной деятельности ресурсами, и, в связи с использованием этих ресурсов, наибольшую нагрузку испытывает ...

Сертификационные требования к экологической безопасности топливных систем двигателей внутреннего сгорания автотранспортных средств
Правительства всех высокоразвитых стран большое внимание стараются уделить здоровью населения. В последнее время большие опасения вызывает малоизученное вредное воздействие малых доз химиче ...

Оценка воздействия на окружающую среду проектируемого производственного здания для инсинераторных установок
Одним из принципов охраны окружающей среды является обязательность оценки воздействия на окружающую среду при принятии решений об осуществлении хозяйственной и иной деятельности (ст. 3 ФЗ «Об ох ...